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ABSTRACT
The asymptotic variance of the maximum likelihood estimate is proved
to decrease when themaximization is restricted to a subspace that con-
tains the true parameter value. Maximum likelihood estimation allows
a systematic fitting of covariance models to the sample, which is impor-
tant in data assimilation. The hierarchicalmaximum likelihood approach
is applied to the spectral diagonal covariance model with different
parameterizations of eigenvalue decay, and to the sparse inverse covari-
ancemodelwith specified parameter values on different sets of nonzero
entries. It is shown computationally that using smaller sets of parame-
ters can decrease the sampling noise in high dimension substantially.

1. Introduction

Estimation of large covariance matrices from small samples is an important problem in many
fields, including spatial statistics, genomics, and ensemble filtering. One of the prominent
applications is data assimilation in meteorology and oceanography, where the dimension of
state vector describing the atmosphere or ocean is in order of millions or larger. Every prac-
tically available sample is a small sample in this context, since a reasonable approximation of
the full covariance can be obtained only with sample size of the order of the dimension of
the problem (Vershynin 2012). In practice, the sample covariance1 is singular and polluted by
spurious correlations. Nevertheless, it carries useful information (e.g. on covariances present
in the actual atmospheric flow) and different techniques can be applied in order to improve
the covariance model and its practical performance.

One common technique is shrinkage, that is, a linear combination of sample covariance
and a positive definite target matrix, which prevents the covariance from being singular. The
target matrix embodies some prior information about the covariance; it can be, e.g., unit
diagonal or, more generally, positive diagonal (Ledoit and Wolf 2004). See, e.g., Schäfer and
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Strimmer (2005) for a survey of such shrinkage approaches. Shrinkage of sample covariance
towards a fixed covariance matrix based on a specific model and estimated from historical
data (called background covariance) was used successfully in meteorology (Hamill and Sny-
der 2000; Wang et al. 2008). This approach is justified as one which combines actual (called
flow-dependent) and long-term average (called climatologic) information on spatial covari-
ances present in the 3D meteorological fields.

Another approach to improving on the sample covariance matrix is localization by sup-
pressing long-range spurious correlations, which is commonly done by multiplying the sam-
ple covariance matrix term by term by a gradual cutoff matrix (Buehner and Charron 2007;
Furrer and Bengtsson 2007) to suppress off-diagonal entries. The extreme case, when only
the diagonal is left, is particularly advantageous in the spectral domain, as the covariance of a
random field in Fourier space is diagonal if and only if the random field in cartesian geometry
is second order stationary, i.e., the covariance between the values at two points depends only
on their distance vector. Alternatively, diagonal covariance in a wavelet basis provides spatial
variability as well (Pannekoucke, Berre, and Desroziers 2007). Spectral diagonal covariance
models were successfully used in operational statistical interpolation inmeteorology in spher-
ical geometry (Parrish and Derber 1992), and versions of Ensemble Kalman Filter (EnKF)
were developed which construct diagonal covariance in Fourier or wavelet space in every
update step of the filter at low cost, and can operate successfully with small ensembles (Man-
del, Beezley, and Kondratenko 2010; Beezley,Mandel, and Cobb 2011; Kasanický,Mandel and
Vejmelka 2015).

Sparse covariancemodels, such as the spectral diagonal, allow a compromise between real-
istic assumptions and cheap computations. Another covariance model taking advantage of
sparsity is a Gauss-Markov Random Field (GMRF), based on the fact that conditional inde-
pendence of variables implies zero corresponding elements in the inverse of the covariance
matrix (Rue andHeld 2005), which leads tomodeling the covariance as the inverse of a sparse
matrix.

However, both spectral diagonal and sparse inverse covariancemodels have a large number
of parameters, namely all terms of the sparse matrix (up to symmetry) which are allowed
to attain nonzero values. This results in overfitting and significant sampling noise for small
samples. Therefore, it is of interest to reduce the number of parameters by adopting additional,
problem-dependent assumptions on the true parameter values.

The principal result of this paper is the observation that if parameters are fitted as the
Maximum Likelihood Estimator (MLE) and the additional assumptions are satisfied by the
true parameters, then the estimate using fewer parameters is asymptotically more accurate,
and often very significantly so even for small samples.

The paper is organized as follows. In Section 2, we provide a brief statement of MLE
and its asymptotic variance. In Section 3, we use the theory of maximum likelihood esti-
mation to prove that for any two nested subspaces of the parametric space containing the
true parameter, the asymptotic covariance matrix of the MLE is smaller for the smaller
parameter space. These results hold for a general parameter and, in the special case of
MLE for covariance matrices we do not need any invertibility assumption. The appli-
cations to estimation of covariance matrices by spectral diagonal and GMRF are pre-
sented in Section 4, and Section 5 contains computational illustrations. A comparison of
the performance of MLE for parametric models and of related shrinkage estimators is in
Section 6.
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2. Asymptotic variance of themaximum likelihood estimator

First, we briefly review some standard results for reference. Suppose XN = [X1, . . . ,XN] is
a random sample from a distribution on R

n with density f (x, θ) with unknown parameter
vector θ in a parameter space � ⊂ R

p. The maximum likelihood estimate θ̂N of the true
parameter θ0 is defined by maximizing the likelihood

θ̂N = argmax
θ

L(θ|XN ), L(θ|XN ) =
N∏
i=1

L(θ|X i), L(θ|x) = f (x, θ),

or, equivalently, maximizing the log likelihood

θ̂N = argmax
θ

�(θ|XN ), �(θ|XN ) =
N∑
i=1

�(θ|X i), �(θ|x) = log f (x, θ). (1)

We adopt the usual assumptions that (i) the true parameter θ0 lies in the interior of �,
(ii) the density f determines the parameter θ uniquely in the sense that f (x, θ1) = f (x, θ2)
a.s. if and only if θ1 = θ2, and (iii) f (x, θ) is a sufficiently smooth function of x and θ. Then
the error of the estimate is asymptotically normal,

√
N(θ̂N − θ0)

d−→ Np(0,Qθ0 ), as N → ∞, (2)

where

Qθ0 = J−1
θ0

, Jθ0 = E(∇θ�(θ
0|X )�∇θ�(θ

0|X )), X ∼ f (x, θ0). (3)

The matrix Jθ0 is called the Fisher information matrix for the parameterization θ0. Here, X , x,
and θ are columns, while the gradient∇θ� of �with respect to the parameter θ is a row vector,
which is compatible with the dimensioning of Jacobi matrices below. The mean value in (3)
is taken with respect to X , which is the only random quantity in (3). Cf., e.g., (Lehmann and
Casella 1998, Theorem 5.1) for details.

3. Nestedmaximum likelihood estimators

Now suppose that we have an additional information that the true parameter θ0 lies in a
subspace of �, which is parameterized by k ≤ p parameters (ϕ1 , . . . , ϕk)

� = ϕ. Denote by
∇ϕθ(ϕ) the p× k Jacobimatrixwith entries ∂θi

∂ϕ j
. In the next theorem,we derive the asymptotic

covariance of the maximum likelihood estimator for ϕ,

ϕ̂N = argmax
ϕ

�(ϕ|XN ), �(ϕ|XN ) =
N∑
i=1

�(ϕ|X i), �(ϕ|x) = log f (x, θ(ϕ)), (4)

based on the asymptotic covariance of θ in (2).

Theorem 1. Assume that the map ϕ 
→ θ(ϕ) is one-to-one from � ⊂ R
k to �, the map ϕ 
→

θ(ϕ) is continuously differentiable, ∇ϕθ(ϕ) is full rank for all ϕ ∈ �, and θ0 = θ(ϕ0) with ϕ0

in the interior of �. Then,
√
N(ϕ̂N − ϕ0)

d−→ Nk(0,Qϕ0 ) as N → ∞, (5)

where Qϕ0 = J−1
ϕ0
, with Jϕ0 the Fisher information matrix of the parameterization ϕ given by

Jϕ0 = ∇ϕθ(ϕ
0)�Jθ0∇ϕθ(ϕ

0). (6)

COMMUNICATIONS IN STATISTICS—THEORY ANDMETHODS 911



Proof. From (3) and the chain rule

∇ϕ�(ϕ|X ) = ∇θ�(θ|X )∇ϕθ(ϕ),

we have

Jϕ0 = E(∇ϕ�(ϕ
0|X )�∇ϕ�(ϕ

0|X ))

= ∇ϕθ(ϕ
0)� E(∇θ�(θ

0|X )�∇θ�(θ
0|X ))∇ϕθ(ϕ

0)

= ∇ϕθ(ϕ
0)�Jθ0∇ϕθ(ϕ

0).

The asymptotic distribution (5) is now (2) applied to ϕ. �

When the parameter θ is the quantity of interest in an application, it is useful to express
the estimate and its variance in terms of the original parameter θ rather than the subspace
parameter ϕ.

Corollary 2. Under the assumptions of Theorem 1,
√
N(θ(ϕ̂N ) − θ0)

d−→ Np(0,Qθ(ϕ0)) as N → ∞, (7)

where

Qθ(ϕ0) = ∇ϕθ(ϕ
0)J−1

ϕ0
∇ϕθ(ϕ

0)� = ∇ϕθ(ϕ
0)(∇ϕθ(ϕ

0)�Jθ0∇ϕθ(ϕ
0))−1∇ϕθ(ϕ

0)�. (8)

Proof. The lemma follows from (5) by the delta method (Rao 1973, p. 387), since the map
ϕ �→ θ(ϕ) is continuously differentiable. �
Remark 3. The matrix Qθ(ϕ0) is singular, so it cannot be written as the inverse of another
matrix, but it can be understood as the inverse J−1

θ(ϕ0)
of the Fisher information matrix for ϕ,

embedded in the larger parameter space �.

Suppose that ψ is another parameterization which satisfies the same assumption as ϕ in
Theorem 1: the map ψ 
→ θ(ψ) is one-to-one from � ⊂ R

m, k ≤ m ≤ p, to �, ψ 
→ θ(ψ)

is continuously differentiable, ∇ψθ(ψ) is full rank for all ψ ∈ � , and θ0 = θ(ψ0), where ψ0

is in the interior of � . Then, similarly as in (7), we have also
√
N(θ(ψ̂N ) − θ0)

d−→ Np(0,Qθ(ψ0)) as N → ∞, (9)

where, as in (8),

Qθ(ψ0 ) = ∇ψθ(ψ
0)J−1

ψ0 ∇ψθ(ψ
0)� = ∇ψθ(ψ

0)(∇ψθ(ψ
0)�Jθ0∇ψθ(ψ

0))−1∇ψθ(ψ
0)�. (10)

The next theorem shows that when we have two parameterizations ϕ and ψ which are
nested, then the smaller parameterization has smaller or equal asymptotic covariance than the
larger one. For symmetric matricesA and B,A ≤ Bmeans thatA − B is positive semidefinite.

Theorem 4. Suppose that ϕ and ψ satisfy the assumptions in Theorem 1, and there exists a
differentiable mapping ϕ �→ ψ from � to �, such that ϕ0 �→ ψ0. Then,

Qθ(ϕ0) ≤ Qθ(ψ0). (11)

In addition, if U ∼ Np(0,Qθ(ϕ0)) andV ∼ Np(0,Qθ(ψ0)) are random vectors with the asymp-
totic distributions of the estimates θ(ϕ̂N ) and θ(ψ̂N ), then

E |U |2 = 1
N

TrQθ(ϕ0) ≤ 1
N

TrQθ(ψ0) = E |V |2, (12)

where |V | = (V�V )1/2 is the standard Euclidean norm in R
p.
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Proof. Denote A = Jθ0 , B = ∇ϕθ(ϕ
0),C = ∇ψθ(ψ

0). From the chain rule,

∇ϕθ
(
ϕ0) = ∇ψθ

(
ψ0) ∇ϕψ

(
ϕ0) ,

we have that B = C∇ϕψ(ϕ0), and, consequently, RangeB ⊂ RangeC. Define

PB = A1/2B(B�AB)−1B�A1/2,

PC = A1/2C(C�AC)−1C�A1/2.

Thematrices PB and PC are symmetric and idempotent, hence they are orthogonal projections.
In addition,

RangePB = RangeA1/2B ⊂ RangeA1/2C = RangePC.

Consequently, PB ≤ PC holds from standard properties of orthogonal projections, and (11)
follows.

To prove (12), note that for random vector X with EX = 0 and finite second moment,
E |X |2 = TrCovX from Karhunen-Loève decomposition and Parseval identity. The proof is
concluded by using the fact that for symmetric matrices, A ≤ B implies TrA ≤ TrB, cf. e.g.,
Carlen (2010). �
Remark 5. In the practically interesting cases when there is a large difference in the dimen-
sions of the parameters ϕ and ψ, many eigenvalues in the covariance of the estimation error
become zero. The computational tests in Section 5 show that the resulting decrease of the
estimation error can be significant.

4. Application: Nested covariancemodels

Models of covariance (e.g., of the state vector in a numerical weather prediction model)
and the quality of the estimated covariance are one of the key components of data assimi-
lation algorithms. High dimension of the problem usually prohibits working with the covari-
ance matrix explicitly. In ensemble filtering methods, this difficulty may be circumvented by
working directly with the original small sample like in the classical Ensemble Kalman filter.
This, however, effectively means using the sample covariance matrix with its rank deficiency
and spurious correlations. Current filtering methods use shrinkage and localization as noted
above, and ad hoc techniques for dimension reduction.

A reliable way towards effective filtering methods lies in introducing sparsity into covari-
ancematrices or their inverses bymeans of suitable covariancemodels. The results of previous
section suggest that it is beneficial to choose parsimonious models, and indeed, in practical
application we often encounter models with a surprisingly low number of parameters.

A large class of covariance models which encompass sparsity in an efficient manner arises
fromGraphicalmodels (Lauritzen 1996) andGaussianMarkov RandomFields (GMRF), (Rue
and Held 2005), where a special structure of inverse covariance is assumed. In the area of
GMRF, nested covariance models arise naturally. If, for instance, we consider a GMRF on a
rectangular mesh, each gridpoint may have 4, 8, 12, 20 etc. neighbouring points which have
nonzero corresponding element in the inverse covariancematrix. Thus, a block band-diagonal
structure in the inverse covariance arises (Ueno and Tsuchiya 2009). The results of Section 3
apply for this case and we shall illustrate them in the simulation study of Section 5.

Finally, variational assimilationmethods, which dominate today’s practice of meteorologi-
cal services, usually employ a covariancemodel based on a series of transformations leading to
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independence of variables (Bannister 2008; Michel and Auligné 2010). At the end, this results
in an estimation problem for normal distribution with a diagonal covariance matrix.

For both ensemble and variational methods, any additional knowledge can be used to
improve the estimate of covariance. Second-order stationarity leads to diagonality in spec-
tral space, diagonality in wavelet space is often a legitimate assumption (e.g., Pannekoucke,
Berre, and Desroziers 2007) and we shall treat the diagonal case in more detail. Suppose

X ∼ Nn(0,D), (13)

where X denotes the random field after the appropriate transform andD is a diagonal matrix.
It is clear that estimatingD by the full sample covariancematrix (what would be the case when
using the classical EnKF) is ineffective in this situation and it is natural to use only the diagonal
part of the sample covariance. In practice, the resulting diagonal matrix may still turn out to
be noisy (Kasanický, Mandel and Vejmelka 2015), and further assumptions like a certain type
of decay of the diagonal entries may be realistic.

Inwhat followswe briefly introduce the particular covariance structures, state some known
facts on full and diagonal covariance, propose parametric models for the diagonal and com-
pute corresponding MLE.

4.1. Sample covariance

The top-level parameter space� consists of all symmetric positive definite matrices, resulting
in the parameterization 	 with n(n+1)

2 independent parameters. The likelihood of a sample
XN = [X (1), . . . ,X (N)] fromNn(0, 	) is

L (	|XN ) = 1
(det	)

N/2
(2π)nN/2 e

− 1
2 Tr(	−1

XNX
�
N ).

If N ≥ n, it is well known (e.g. Muirhead (2005), p. 83) that the likelihood is maximized at
what we call here sample covariance matrix

	̂N = 1
N

N∑
i=1

X (i)(X (i))�. (14)

The Fisher informationmatrix of the sample covariance estimator is (Magnus and Neudecker
2007, p. 356)

J(0)(vec(	)) = 1
2
	−1 ⊗ 	−1,

where ⊗ stands for the Kronecker product and vec is an operator that transforms a matrix
into a vector by stacking the columns of the matrix one underneath the other. This matrix has
dimension n2 × n2.

Remark 6. If 	̂N is singular, L(	̂N |XN ) cannot be evaluated because that requires the inverse
of 	̂. Also, in this case the likelihood L(	|XN ) is not bounded above on the set of all
	 > 0, thus the maximum of L(	|XN ) does not exist on that space. To show that, consider
an orthonormal change of basis so that the vectors in span(XN ) come first, write vectors and
matrices in the corresponding 2 × 2 block form, and let

	̃N =
[

	̃11 0
0 0

]
, 	̃11 > 0.
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Then lima→0+ X
�
N (	̃N + aI)−1

XN exists, but lima→0+ det(	̃N + aI) = 0, thus

lim
a→0+

L(	̃N + aI|XN ) = ∞.

Note that when the likelihood is redefined in terms of the subspace span(XN ) only, the
sample covariance can be obtained by maximization on the subspace (Rao 1973, p. 527).

When the true covariance is diagonal (	 ≡ D, cf. (13)), a significant improvement can be
achieved by setting the off-diagonal terms of sample covariance to zero,

D̂(0)
N = diag

(
	̂N

)
. (15)

It is known that using only the diagonal of the unbiased sample covariance

	̂u
N = 1

N − 1

N∑
i=1

X (i)(X (i))�

results in smaller (or equal) Frobenius norm of the error pointwise,∣∣D̂(0)
N − D

∣∣
F ≤ ∣∣	̂u

N − D
∣∣
F (16)

cf. Furrer and Bengtsson (2007) for the case when the mean is assumed to be known like
here, and Kasanický, Mandel and Vejmelka (2015) for the unbiased sample covariance and
unknown mean.

4.2. Diagonal covariance

The parameter space �1 consisting of all diagonal matrices with positive diagonal, with n
parameters d = (d1, . . . , dn)�, can be viewed as a simple class of models for either covari-
ance or its inverse. The log-likelihood function forD = diag(d1, . . . , dn)with a given random
sample XN = [X (1), . . . ,X (N)] fromNn(0,D) is

�(D|XN ) = −N
2
log((2π)n|D|) − 1

2

N∑
k=1

(
X (k))�D−1X (k)

and has its maximum at

d̂ j = 1
N

N∑
k=1

(
X (k)

j

)2
, j = 1, . . . , n, (17)

whereX (k)
j denotes the j-th entry ofX (k). The sum of squares S2j = ∑N

k=1(X
(k)
j )2 is a sufficient

statistic for the variance dj. Thus, we get the maximum likelihood estimator

D̂(1)
N = 1

N
diag

(
S21, . . . , S

2
n

)
. (18)

It is easy to compute the Fisher information matrix explicitly,

JD(1) = diag
(

1
2d2

1
, . . . ,

1
2d2

n

)
. (19)

which is an n × nmatrix and gives the asymptotic covariance of the estimation error
1
N
QD(1) = 1

N
J−1
D(1) = 1

N
diag

(
2d2

1, . . . , 2d
2
n

)
from (2).
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4.3. Diagonal covariance with prescribed decay by 3 parameters

A more specific situation appears when we have an additional information that the matrix
D is not only diagonal, but its diagonal entries have a prescribed decay. For instance, this
decay can be governed by a model of the form di = ((c1 + c2hi) fi(α))−1, i = 1, . . . , n, where
c1, c2 and α are unknown parameters, h1, . . . , hn are known positive numbers, and f1, . . . , fn
are known differentiable functions. For easier computation it is useful to work with τi = 1

di
=

(c1 + c2hi) fi(α).Maximum likelihood estimators for c1, c2, andα can be computed effectively
from the likelihood

�(D|XN ) = −N
2
n log(2π) + N

2

n∑
i=1

log τi − 1
2

n∑
i=1

τiS2i (20)

by using the chain rule. It holds that

∂�

∂c1
=

n∑
i=1

∂�

∂τi

∂τi

∂c1
=

n∑
i=1

(
N
2τi

− S2i
2

)
∂τi

∂c1

= N
2

n∑
i=1

(
1

(c1 + c2hi) fi(α)
− 1

N
S2i

)
fi(α).

Setting this derivative equal to zero we get

n∑
i=1

(
1

c1 + c2hi
− 1

N
S2i fi(α)

)
= 0. (21)

Analogously,

∂�

∂c2
=

n∑
i=1

∂�

∂τi

∂τi

∂c2
= N

2

n∑
i=1

(
1

(c1 + c2hi) fi(α)
− 1

N
S2i

)
hi fi(α),

so the equation for estimating the parameter c2 is

n∑
i=1

(
hi

c1 + c2hi
− 1

N
S2i hi fi(α)

)
= 0. (22)

Similarly,

∂�

∂α
=

n∑
i=1

∂�

∂τi

∂τi

∂α
= N

2

n∑
i=1

(
1

(c1 + c2hi) fi(α)
− 1

N
S2i

)
(c1 + c2hi)

∂ fi(α)

∂α

= N
2

n∑
i=1

(
1

fi(α)
− 1

N
S2i (c1 + c2hi)

)
∂ fi(α)

∂α

and setting the derivative to zero, we get

n∑
i=1

(
1

fi(α)

∂ fi(α)

∂α
− 1

N
S2i (c1 + c2hi)

∂ fi(α)

∂α

)
= 0. (23)

The maximum likelihood estimator for D is then given by

D̂(3) = diag{((ĉ1 + ĉ2hi) fi(α̂))−1, i = 1, . . . , n}, (24)
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where (ĉ1, ĉ2, α̂) is the solution of the system (21), (22), (23). This expression corresponds
to searching a maximum likelihood estimator of D in the subspace �3 ⊂ �1 ⊂ � formed by
diagonal matrices diag{((c1 + c2hi) fi(α))−1, i = 1, . . . , n}.

For completeness, the asymptotic covariance of the estimation error about

D(3) = diag{di(c1, c2, α), i = 1, . . . , n},
contained in XN is

1
N
QD(3) = 1

N
∇d(c1, c2, α)J−1

c1,c2,α∇d(c1, c2, α)� (25)

from (8), where the Fisher information matrix Jc1,c2,α is the 3 × 3 matrix

Jc1,c2,α

=

⎡
⎢⎢⎢⎣

1
2

∑n
i=1

1
(c1+c2hi)2

1
2

∑n
i=1

hi
(c1+c2hi)2

1
2

∑n
i=1

1
(c1+c2hi) fi(α)

∂ fi(α)

∂α

1
2

∑n
i=1

hi
(c1+c2hi)2

1
2

∑n
i=1

h2i
(c1+c2hi)2

1
2

∑n
i=1

hi
(c1+c2hi) fi(α)

∂ fi(α)

∂α

1
2

∑n
i=1

1
(c1+c2hi) fi(α)

∂ fi(α)

∂α

1
2

∑n
i=1

hi
(c1+c2hi) fi(α)

∂ fi(α)

∂α

1
2

∑n
i=1

1
f 2i (α)

(
∂ fi(α)

∂α

)2

⎤
⎥⎥⎥⎦

and

d(c1, c2, α) = [d1(c1, c2, α), . . . , dn(c1, c2, α)]�

= [
((c1 + c2h1) f1(α))−1, . . . , ((c1 + c2hn) fn(α))−1]�

.

4.4. Diagonal covariance with prescribed decay by 2 parameters

We may consider a more specific model for diagonal elements with two parameters: di =
(c fi(α))−1, i.e. τi = c fi(α), i = 1, . . . , n, where c and α are unknown parameters. Maximum
likelihood estimators for c and α can be computed similarly as in the previous case. The esti-
mating equations have the form

1
c

= 1
n

n∑
i=1

1
N
S2i fi(α)

1
c

n∑
i=1

1
fi(α)

∂ fi(α)

∂α
=

n∑
i=1

1
N
S2i

∂ fi(α)

∂α
,

which can be rearranged to

1
c

= 1
n

n∑
i=1

1
N
S2i fi(α) (26)

0 =
n∑

i=1

S2i fi(α)

⎛
⎝ 1

fi(α)

∂ fi(α)

∂α
− 1

n

n∑
j=1

1
f j(α)

∂ f j(α)

∂α

⎞
⎠ . (27)

Equation (27) is an implicit formula for estimating α. Its result can be used for estimating c
through (26). The maximum likelihood estimator for D is then given by

D̂(2) = diag
(
(ĉ f1(α̂))−1, . . . , (ĉ fn(α̂))−1) , (28)

where ĉ and α̂ are MLEs of c and α. It corresponds to searching a maximum likeli-
hood estimator of D in the subspace �2 ⊂ �3 ⊂ �1 ⊂ � formed by diagonal matrices
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diag{(c fi(α))−1, i = 1, . . . , n}. Of course, the estimator D̂(2) does not have “larger” variance
than D̂(3).

The covariance of the asymptotic distribution of the parameters d1, . . . , dn is

1
N
QD(2) = 1

N
∇d(c, α)J−1

c,α∇d(c, α)�, (29)

from (8), where Fisher information matrix at D = diag{di(c, α), i = 1, . . . , n} is the 2 × 2
matrix

Jc,α =
⎡
⎣

n
2c2

1
2c

∑n
i=1

1
fi(α)

∂ fi(α)

∂α

1
2c

∑n
i=1

1
fi(α)

∂ fi(α)

∂α

1
2

∑n
i=1

1
f 2i (α)

(
∂ fi(α)

∂α

)2

⎤
⎦

and d(c, α) = [d1(c, α), . . . , dn(c, α)]� = [(c f1(α))−1, . . . , (c fn(α))−1]�.

4.5. Sparse inverse covariance and GMRF

In the GMRF method for fields on a rectangular mesh, we assume that a variable on a grid-
point is conditionally independent on the rest of the gridpoints, given values on neighboring
gridpoints. It follows that nonzero entries in the inverse of the covariance matrix can be only
between neighbor gridpoints. We start with 4 neighbors (up, down, right, left), and adding
neighbors gives rise to a sequence of nested covariance models. If the columns of the mesh
are stacked vertically, their inverse covariance matrix will have a band-diagonal structure.

The inverse covariance model fitted by MLE was introduced by Ueno and Tsuchiya (2009)
and applied on data from oceanography. The corresponding Fisher information matrix may
be found as the negative of the Hessian (Ueno and Tsuchiya 2009, eq. (C17)).

5. Computational study

In Section 3, we have shown that in the sense of asymptotic variance and second moment
(mean-squared) error, the maximum likelihood estimator computed in a smaller space con-
taining the true parameter is more (or equally) precise. For small samples, we illustrate this
behavior by means of simulations.

5.1. Simulation of simple GMRF

We first show that in the case of GMRF with four neighbors per gridpoint, adding depen-
dencies (parameters) which are not present brings a loss of precision of the MLE. Using the
sample covariance in this case causes a substantial error.

Wehave generated an ensemble of realizations of aGMRFwith dimensions 10 × 10 (result-
ing in n = 100) and inverse covariance structure as in Figure 1. The values on the diagonals
of the covariance matrix have been set to constant, since we assume the correlation with left
and right neighbor to be identical, as well as the correlation with upper and lower neighbor
(by symmetry of the covariance matrix and isotropy in both directions of the field, but differ-
ent correlation in each direction). This leads to a model with 3 parameters for 4 neighbors, 5
parameters for 8 neighbors and 7 parameters for 12 neighbors,

The covariance structure of 	−1 with 4 neighbors was set as “truth” and random samples
were generated fromNn(0, 	) with sample sizes N = 10, 15, 20, . . . , 55. The values on first,
second and tenth diagonal have been set as 5, −0.2 and 0.5. For each sample, we computed
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Figure . Block band-diagonal structure of inverse covariance matrix.  columns of dimension , stacked
vertically. , ,  neighbors of any gridpoint.

successively the MLE with 3, 5 and 7 unknown parameters numerically by Newton’s method,
as described in Ueno and Tsuchiya (2009).

The difference of each estimator from the true matrix 	 was measured in the Frobenius
norm, which is the same as the Euclidean norm of amatrix written as one long vector. In order
to reduce the sampling error, 50 simulations of the same size were generated and the mean of
squared Frobenius norm was computed. The results can be found in Figure 2.

As expected, the MLE with 3 parameters outperforms the estimates with 5 and 7 parame-
ters and the Frobenius norm for sample covariance stays one order worse than all parametric
estimates.

5.2. Simulation of fields with diagonal covariance

The simulation for spectral diagonal covariance was carried out in a similar way. First,
a diagonal matrix D was prepared, whose diagonal entries decay according to the model
di = 1

c e
αλi, i = 1, . . . , n, where c and α are parameters and λi are the eigenvalues of Laplace

operator in two dimensions on 10 × 10 nodes (so again n = 100). Such models are useful in
modeling smooth random fields, e.g., in meteorology. Then, random samples were generated
from Nn(0,D) with sample sizes N = 5, . . . , 20. For each sample, four covariance matrix
estimators were computed:

10 15 20 25 30 35 40 45 50 55
sample size N

10-4

10-3

10-2

10-1

100

101

sq
ua

re
 o

f F
ro

be
ni

us
 n

or
m

sample covariance.
13 diags
9 diags
5 diags

Figure . Error of the MLE in Frobenius norm for sample covariance and models with , ,  neighbors, i.e.
, ,  nonzero diagonals in the inverse covariance matrix.
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� sample covariance matrix 	̂N , cf. (14)
� diagonal part D̂(0) of the sample covariance matrix, cf. (15)
� MLE D̂(1) in the space of diagonal matrices, cf. (18)
� MLE D̂(3) = diag{(ĉ1 − ĉ2λi)

−1eα̂λi, i = 1, . . . , n}with 3 parameters c1, c2 andα, cf. (24).
� MLE D̂(2) = diag{ĉ−1eα̂λi, i = 1, . . . , n} with 2 parameters c and α, cf. (28).
Let us briefly discuss the choice of the covariance model di = 1

c e
αλi . We decided to carry

out the simulation with a second-order stationary random field, whose covariance can be
diagonalized by the Fourier transform. This transform is formed by the eigenvectors of the
Laplace operator. Hence, it is reasonable tomodel the diagonal terms of this covariancematrix
(i.e. the covariance eigenvalues) by some function of eigenvalues of the Laplace operator. This
function needs to have a sufficiently fast decay in order to fulfil the necessary condition for
the proper covariance (the so-called trace class property, e.g., Kuo (1975)). Exponential decay
is used, e.g., in Mirouze andWeaver (2010). Another possible choice of a covariance model is
a power model, where the eigenvalues of the covariance are assumed to be a negative power
of −λi, i = 1, . . . , n, e.g., Berner et al. (2009); Gaspari et al. (2006); Simpson, Lindgren, and
Rue (2012).

The difference of each estimator from the true matrix D was measured in the Frobenius
norm again. To reduce the sampling noise, 50 replications have been done for each sample
size and the mean of squared Frobenius norm can be found in Figure 3.

For the diagonal MLE, given by (18), (24), and (28), we can expect from (12) that these
estimators should satisfy asymptotically

E
(∣∣D̂(k)

N − D
∣∣2
F

) ≈ 1
N

Tr
(
J−1
D(k)

)
, k = 1, 2, 3, (30)

even if convergence in distribution does not imply convergence of moments without addi-
tional assumptions. This conjecture can be supported by a comparison of Figures 5 and 4,
where we observe the same decay. From the nesting, we know that

Tr
(
J−1
D(2)

) ≤ Tr
(
J−1
D(3)

) ≤ Tr
(
J−1
D(1)

)
(31)

and we can expect that the Frobenius norm should decrease for more restrictive models, that
is,

E
∣∣D̂(2)

N − D
∣∣2
F ≤ E

∣∣D̂(3)
N − D

∣∣2
F ≤ E

∣∣D̂(1)
N − D

∣∣2
F , (32)

which is confirmed by the simulations (see Figure 4, resp. 5).
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MLE with 3 parameters
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const N -1  (least squares fit)

Figure . Comparison of the error matrix D̂ − D in the Frobenius norm. The field had dimension n = 10 ×
10. Exponential decay of eigenvalues (i.e. τi = ceαλi , i = 1, . . . , n ) was usedwith parameters c = 1/30 and
α = 0.002. The full line is the order of convergence const(N−1) fitted to the error of the sample covariance.
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D ) for the three parameterizations.

The comparisons (32) of the Frobenius norm of the error in themean squared complement
the pointwise comparison (16) between the sample covariance and its diagonal. Relying on
MLE for that comparison is not practical, because the sample size of interest here is N < n,
and, consequently, 	̂N is singular and cannot be cast as MLE with an accompanying Fisher
informationmatrix, cf. Remark 6. But it is evident that for small sample sizes, estimators com-
puted in the proper subspace perform better. Hence, the hierarchical order seems to hold even
when N < n.

6. Comparison with regularizationmethods

In the previous sections, we pointed out the advantages of using low-parametric models for
estimating a covariance matrix using a small sample. As mentioned in the Introduction,
there is another large class of estimating methods for high-dimensional covariance matri-
ces: shrinkage estimators. The principle of these methods is to move the sample covariance
towards a target matrix that possesses some desired properties (e.g., full rank, proper struc-
ture). This can be seen as a convex combination of the sample covariance matrix 	̂N and the
so called target matrix T :

	̂S = γ 	̂N + (1 − γ )T, for γ ∈ [0, 1]. (33)

One of the simplest shrinkage estimators has the form of (33 ) with the target matrix equal
to identity, which results in shrinking all sample eigenvalues with the same intensity towards
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Figure . Mean of |D̂(k)
N − D|2F based on  replications.
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their mean value. Ledoit andWolf (2004) derived the optimal shrinkage parameter γ to min-
imize the squared Frobenius loss

min
γ

E ||	̂S − D||2F . (34)

The comparison of this estimator with the maximum likelihood estimator D̂(2) was accom-
plished by a simulationwith identical setting as in Section 5. The results are shown in Figure 6.
For reference, the sample covariance 	̂N and its diagonal D̂(0) are also added.

Another regularization method is described in Won et al. (2013). They consider a type of
covariance estimator, where the regularization effect is achieved by bounding the condition
number of the estimate by a regularization parameter κmax. Since the condition number is
defined as a ratio of the largest and smallest eigenvalue, this method corrects for overestima-
tion of the largest eigenvalues and underestimation of the small eigenvalues simultaneously.
The resulting estimator is called a condition-number-regularized covariance estimator and
it is formulated as the maximum likelihood estimator restricted on the subspace of matrices
with condition number bounded by κmax, i.e.

max
	

�(	) subject to
λmax(	)

λmin(	)
≤ κmax, (35)

where λmax(	), resp. λmin(	), is the largest, resp. the smallest, eigenvalue of the covariance
matrix 	. An optimal κmax is selected by maximization of the expected likelihood, which is
approximated by using K-fold cross-validation. The authors proved that κmax selected in this
way is a consistent estimator for the true condition number (i.e. the condition number of D).
Therefore, the idea of this method is to search a MLE in a subspace defined by covariance
matrices with condition number smaller or equal to the true condition number. The form
of the resulting covariance estimator together with the details of the computational process
is provided in Won et al. (2013). In Figure 6, we can see the performance of this estimator
(denoted as cond-num-regularization) in comparison of other methods.

The shrinkage estimator 	̂S and the condition-number-regularized estimator result in
non-diagonal matrices, which in our case predetermines them to perform worse than the
diagonal estimator D̂(0). However, we have to note that performance of thesemethods strongly
depends on the particular form of the true covariancematrixD. In the case when the decrease
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Figure . Comparison of regularization estimators with maximum likelihood estimators. The error matrices
	̂ − D are compared in the Frobenius norm. The simulation setting was identical with the Section .
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of the true eigenvalues is less rapid, both methods may provide better results than the diago-
nal of sample covariance. The performance of 	̂S could be possibly improved by choosing a
different target matrix that is closer to reality but such a study is out of the scope of this paper.

It is seen from Figure 6 that the condition-number-regularized estimator provides more
precise estimates than the sample covariance 	̂N , as expected. This is in accordance with
the preceding theory and empirical findings about the higher precision of estimators from
a smaller parametric subspace (the corresponding parametric subspace consists of matrices
with the condition number smaller or equal to κmax). If, however, the theoretical condition
number is very large as in our case, the method has a problem in estimating this number and
its performance is limited.

Both regularization estimators perform well against sample covariance, but the setting
of our simulation is less favourable for them. Neither of them can compete with the maxi-
mum likelihood estimator found in the true small subspace of diagonal matrices with proper
decay.

7. Conclusions

Our main aim was to point out the significant advantage resulting from computing the MLE
of the covariance matrix in a proper parameter subspace, especially in the high-dimensional
setting, when the available sample has small size relative to the dimension of the problem.
This subspace can be formed, e.g., by a parametric model for covariance eigenvalues or for a
diagonal matrix resulting from a suitable set of transformations.

We provided theoretical results on asymptotic comparison of covariance matrices of each
estimator for multivariate normal distribution, where we can lean on the well-developed
maximum likelihood theory. The situation for small samples was illustrated by means of a
simulation. We consider two-parametric models for the covariance eigenvalues based on the
eigenvalues of Laplace operator. In practice, the proper model/subspace can be inferred from
historical data.

Using a properly specified model, one can reach a significant improvement in perfor-
mance, which can have a positive impact on the subsequent tasks like data assimilation and
prediction.
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